KEY POINTS

- Fixed-time artificial insemination (FTAI) is an important, successful and widely accepted practice to improve pregnancy rates (PRs) on dairy operations.

- Zoetis’ pivotal efficacy trials for an approved FTAI label showed pregnancies per fixed-time artificial insemination (P/FTAI), commonly referred to as conception risk (CR), for cows in six commercial dairies were significantly improved using FACTREL® Injection (gonadorelin injection) (2 mL dose, 27.3%) compared with the control group (17.1%, \(P=0.001\)). This was an increase of 59.6%.

- In the largest FTAI noninferiority study to date with 5,827 animals, first service CR was compared utilizing different gonadotropin-releasing hormone (GnRH) products in FTAI. CR for FACTREL (37.6%) was not different (\(P=0.65\)) from the current farm protocol (39.0%). FACTREL was noninferior to current farm protocols utilizing gonadorelin diacetate tetrahydrate.

- In an independent noninferiority FTAI study of 2,620 cows from 40 Canadian herds, first service CR was 40.4% for FACTREL and 41.0% for Fertiline* (GnRH acetate, Vétoquinol, Lavaltrie, Quebec, Canada); FACTREL was noninferior to Fertiline. Another independent study with 3,938 cows showed CR of FACTREL was noninferior to Cystorelin* (gonadorelin diacetate tetrahydrate injection) in FTAI (36% vs. 37%, respectively).

- Using FACTREL (2 mL dose) and LUTALYSE® Injection (dinoprost injection) in combination provides a Food and Drug Administration (FDA)-approved method of synchronizing estrus and achieving equivalent CRs and PRs in thousands of dairy cows in widespread locations utilizing a variety of FTAI programs.

- With more than 12,000 combined cows studied, producers can have confidence that FACTREL is effective and can be successfully utilized in their FTAI programs in combination with LUTALYSE, when administered according to label.
INTRODUCTION

Estrous synchronization followed by FTAI has been widely used to manage and improve PRs in commercial dairy operations. The professional literature describes Ovsynch programs consisting of GnRH injection, followed by prostaglandin F2α (PGF2α) administration seven days later, followed by a second injection of GnRH approximately 48 to 56 hours later, with FTAI either 24 or 16 hours later. Typically, both doses of GnRH are 100 µg because that dose, used to treat ovarian cysts, was once the only FDA-approved dose in cattle.

Zoetis conducted a pivotal efficacy study to establish the effectiveness of FACTREL® and LUTALYSE® for synchronizing estrous cycles to facilitate FTAI in lactating dairy cows and to determine the appropriate dose of FACTREL. This large, multisite study was conducted under commercial production conditions using a variety of Ovsynch regimens and three FACTREL treatments. In addition, two large noninferiority studies in commercial dairies compared CR outcomes from FTAI regimens using FACTREL or other GnRH products, and a third study compared CR in cows administered FACTREL or Cystorelin®.

MATERIALS AND METHODS

Pivotal Efficacy Study of FACTREL vs. Placebo

A total of 1,142 Holstein, Jersey or crossbred cows from six commercial dairies (New York, Michigan, Minnesota, Florida, Colorado and California) were enrolled at >32 and <140 days post-calving. Cows were clinically normal and had a body condition score of >2 and <4 at enrollment. They were randomly assigned to one of four groups: Control — 5 mL LUTALYSE administered on Day 7 with FTAI 72 ± 2 hours later; or doses of 100, 150, or 200 µg (2, 3 or 4 mL) FACTREL, administered accordingly:

- **Day 0:** first dose of FACTREL
- **Day 7:** 5 mL LUTALYSE
- **Day 9:** second dose of FACTREL at either 48 ± 2 hours after LUTALYSE with FTAI 24 ± 2 hours later (Day 10) or 56 ± 2 hours after LUTALYSE with FTAI 17 ± 2 hours later (Day 10).

Three sites elected to use the earlier timing for the second administration of FACTREL and three sites elected the later administration.

Cows were observed for estrus and abnormal clinical signs at least once daily from Day 1 to the end of the study. Cows in estrus after Day 12 were assumed to be not pregnant and could be inseminated. Final pregnancy diagnosis was conducted 42 to 65 days after breeding. The primary efficacy variable was the P/FTAI, herein referred to as Conception Risk (CR), defined as:

\[
CR = \frac{\text{number pregnant at final pregnancy diagnosis}}{\text{number of animals inseminated at FTAI} - \text{animals removed from analysis}} \times 100
\]

CR was analyzed as a binary variable using a generalized linear mixed model with a binomial error distribution and a logit link function. The statistical model included fixed effects for treatment and random effects of site, site by treatment, enrollment cohort within site and residual. Parity was included as a covariate, and treatment differences were analyzed using site-by-treatment interactions. Within-herd treatment protocols were the same for approximately equal numbers of animals per treatment group. Least squares means, standard errors and 95% confidence intervals were constructed, and effectiveness was determined as statistically significant using a two-tailed test and a \(P \) value of ≤0.05.
Zoetis Noninferiority Study of FACTREL® vs. Current Farm Protocol2

Primiparous or multiparous Holstein dairy cows from eight herds in five states (Arizona, California, Michigan, Idaho, Wisconsin) were recruited into this comparison of FACTREL with other GnRH products (Cystorelin8, Merial, Duluth, GA or Fertagyl9 (gonadorelin), Merck Animal Health, Summit, NJ) used in a variety of FTAI programs (PG-3-G-Ovsynch9, Presynch-Ovsynch10, Double Ovsynch11). All GnRH doses were 2 mL. Participating dairies ranged in size from 2,200 to 5,300 lactating cows, with 305 Mature Equivalent (ME) ranging from 24,032 lb. to 27,068 lb. Inclusion criteria included a body condition score of ≥312, healthy at start of Ovsynch, no Eazi-Breed™ CIDR8 Cattle Insert use and insemination exactly as scheduled. LUTALYSE was the only prostaglandin used; all doses were 5 mL, providing 25 mg PGF\textsubscript{2}α per dose. Pregnancy diagnosis was made by rectal palpation or ultrasound 42 to 55 days after insemination. The primary outcome measured was CR following first insemination.

Logistic regression models were used to compare the upper limit treatment difference of the 95% confidence intervals. FACTREL would be considered noninferior if this difference was <7%. The primary outcome was based on pregnancy diagnosis following first insemination (P = pregnant or O = open). Since the primary outcome represented a binomial distribution, results were analyzed using the PROC GLIMMIX procedure of SAS with a logit link function. The final statistical model included fixed effects due to parity group (1 or ≥2), treatment (FACTREL or current farm protocol) and the treatment by parity group interaction; random model effects included first breeding month within herd and parity group, and the herd-by-parity group by treatment interaction. The 305ME milk, computed from Week 10 milk yield, was tested as a covariate but was found to be without effect on the model.

Noninferiority Study of FACTREL vs. Fertiline3

Commercial dairy herds from two veterinary clinics in Québec recruited cows for a study of a Double Ovsynch protocol using FACTREL or Fertiline, a product approved for use in Canada for treatment of cows with cystic ovaries. This noninferiority study was based on not finding a difference of >7% between first service CR. All cows >33 days in milk (DIM) were randomly assigned to receive either FACTREL or Fertiline for their GnRH injections. Reproductive performance at first service and peripartum health events of all cows were recorded over a 14-month period. Cows were examined for pregnancy diagnosis by transrectal palpation or ultrasound.

Logistic regression models were used to compare CR of the two GnRH products accounting for the random effect of herd. Predictors of CR and their interaction with the GnRH variable (P<0.10) were tested as fixed effects: parity (primiparous vs. multiparous), breeding season and recording of retained placenta or metritis. The reduced model was obtained after deleting all variables that did not qualitatively change the odds ratio.
RESULTS

Pivotal Efficacy Study of FACTREL® vs. Placebo¹

Fifty-two cows were removed from the study because of protocol deviations or injury, illness, culling or death. Their data were included up to the day of removal. A third of the remaining cows (307/1,090, 33.9%) were first parity, and 66.1% (720/1,090) were second parity. Figure 1 depicts the CR for the four study groups. All the doses of FACTREL resulted in significantly greater CR than treatment without FACTREL. There were no significant differences between FACTREL treatment groups for CR, and none of the pair-wise comparisons between groups approached significance. Parity had no significant effect on CR. No abnormal clinical signs were attributed to treatment.

Zoetis Noninferiority Study of FACTREL vs. Current Farm Protocol²

A total of 5,827 animals were enrolled, including 1,741 (30%) primiparous and 4,086 (70%) multiparous cows; 2,909 received FACTREL and 2,918 received other GnRH products in the first service FTAI protocols. Synchronization start dates ranged from 29 to 61 DIM, with days between the start of presynchronization and insemination ranging from 20 to 38. The final statistical model showed that neither lactation group (P=0.32) nor lactation group by treatment interaction (P=0.77) was significant. The least squares mean for first service CR among cows treated with FACTREL was 37.6% (n=2,902), and among cows treated with gonadorelin diacetate tetrahydrate was 39.0% (n=2,918), Figure 2. Thus, the difference between treatments was 1.4% (upper and lower 95% confidence intervals of -3.9% to 6.9%). On the basis of these results, first service CRs were not different between treatments (P=0.65), and FACTREL is noninferior to gonadorelin diacetate tetrahydrate.

Noninferiority Study of FACTREL vs. Fertiline®³

A total of 2,620 cows from 40 herds were recruited into this study (mean = 65 ±46.2 cows/ herd) and the average parity of these cows was 2.4 (±1.48).³ The Double Ovsynch protocol started on average at 38 DIM (±4.6). The first service CR was 40.4% (n=1,328) for FACTREL and 41.0% (n=1,292) for Fertiline (Figure 3). Results were similar for each practice site. Interactions were not significant and the odds ratio of GnRH was similar in the complete and reduced models. Therefore, in the logistic regression model accounting for the effect of herd clustering, the odds ratio of GnRH variable was 0.98 (using FACTREL® as referent; 95% confidence interval: 0.84-1.16; P=0.84). Conception risk was significantly higher (P<0.01) in primiparous cows (48.7%; n=850) compared with multiparous cows (36.9%; n=1,770).

Figure 1. Conception Risk (%) in a Pivotal Efficacy Study of FACTREL vs. Placebo
DISCUSSION
Timed artificial insemination after synchronization of ovulation has become one of the most commonly used reproductive technologies developed in the last 40 years. Indeed, Wiltbank and Pursley estimated that 9% of U.S. dairy herds used estrous synchronization/FTAI protocols in 1998, but that 58% of farms used these protocols in 2008. Wiltbank and Pursley provide an excellent historical review of the development of Ovsynch protocols for cattle, which use exogenous prostaglandin (PGF$_2$α) to induce luteolysis, and GnRH to stimulate surges of luteinizing hormone (LH) to induce ovulation. By itself, Ovsynch was shown to have no effect on fertility in dairy cows (CR or pregnancies/cows bred) compared with traditional breeding programs based on observing estrus. However, Ovsynch is effective for reducing average days open in dairy herds because it ensures that all cows on protocol are inseminated, and therefore have an increased probability of becoming pregnant.
Subsequently, researchers recognized that not all cows enrolled into Ovsynch are at a stage of the estrous cycle that is responsive to the initial GnRH treatment. As a consequence, several presynchronization programs were developed, with the goal of “priming” cows for Ovsynch to thereby increase conception. The overall impact of presynchronization is to improve fertility of cows during the Ovsynch phase, which substantially improves conception per insemination compared with using Ovsynch programs alone.11

FACTREL®, which contains GnRH hydrochloride (HCl) as the active ingredient, is one of two GnRH products approved for use in Ovsynch protocols in dairy cows (FDA, 2013; NADA 139-237); in the case of FACTREL, LUTALYSE® is the approved prostaglandin to be used in combination. Pivotal trials supporting the use of FACTREL for estrous synchronization were reported by Chenault et al.,1 who showed improvements in CR compared with a negative control when Ovsynch48 or Ovsynch56 protocols were implemented at FACTREL doses of 2 mL (100 \(\mu\)g gonadorelin), 3 mL (150 \(\mu\)g gonadorelin), and 4 mL (200 \(\mu\)g gonadorelin). The improvement in pregnancies per FTAI in the FACTREL groups was expected, as the control group regimen would fail to synchronize ovulation in cows during the first five to seven days of the estrous cycle, and ovulation in many of the cows responding to the PGF\textsubscript{2}a injection would occur outside the window of optimum fertility for FTAI at 72 hours.

Previous studies of GnRH products reported a reduced ovulation rate in response to 100 \(\mu\)g of FACTREL, which contains the HCl salt of GnRH, compared with the same doses of the diacetate tetrahydrate form of GnRH (Cystorelin®, Fertagyl,12-13 among others). Whereas Souza et al. attributed the treatment-related effect on ovulation to reduced LH concentrations in response to FACTREL, they showed no significant treatment differences among the products evaluated on time to peak LH concentration, peak LH concentration or area under the LH concentration by time curve in cows treated with 100 \(\mu\)g GnRH. Even among GnRH products in the form of the diacetate tetrahydrate salt, ovulation rates ranged from 73.6\% to 85.0\% of cows treated, which suggests inherent variability in responses. Release of LH from the anterior pituitary is very pulsatile in nature, and other factors, such as progesterone level, also affect LH secretion.14

Contradicting the implications of data reported by Souza et al.13 that decreased ovulation rates will yield decreased CR, Cline15 evaluated CR in beef cows to Ovsynch protocols that utilized either FACTREL or Cystorelin®, and showed a tendency for a greater proportion of cows treated with FACTREL to be pregnant at 45 days post-insemination than cows treated with Cystorelin. Cline also showed that neither peak LH concentration nor area under the LH concentration by time curve was different in beef cows treated with Cystorelin or FACTREL. Martinez et al.16 also evaluated LH responses to GnRH products and showed that mean LH concentrations were higher among nonlactating Holstein cows treated with Cystorelin than those treated with FACTREL®. However, they also showed that peak LH concentrations were higher among cows treated with Cystorelin than those treated with a different product containing the same salt of GnRH, Fertagyl®. Taken together, it seems plausible that treatment differences in various studies may simply represent spurious observations, or biological variation in stage of cycle, and unlikely that GnRH products containing the same active ingredient administered at the same dose would, in fact, cause differential responses in LH profiles. Giordano et al.14 pointed out that many factors impact responsiveness to GnRH experimentally, including the type and physiological conditions of the animals used, variations among GnRH products,
...GnRH doses administered, LH assay methods, parameters used to compare LH secretions and steroid milieu at the time of GnRH treatment. Giordano et al. further showed that magnitude of LH secretion in response to GnRH treatments in cattle is mitigated in part by circulating concentrations of progesterone present at the time of GnRH injection.

The most important measure of the relative utility of different GnRH products in Ovsynch protocols is the ability of cows to conceive following treatment and insemination. To this end, data reported herein by Zoetis, as well as two comparable studies conducted without Zoetis participation, all appear to show that CR is similar, regardless of the GnRH product utilized. Table 1 summarizes first service CR data from the largest Zoetis noninferiority study, as well as those from other publications.

The third study by Poock and Lucy supports the conclusion that GnRH products induce equivalent effect. Their study of 3,938 Holsteins compared CR in cows subjected to a FTAI protocol using FACTREL® or Cystorelin®; this study yielded pregnancy outcomes on approximately 1,975 cows per treatment group. Again treatment differences were not significant (P>0.10). This result is consistent with the two noninferiority studies described here, which compared FTAI outcomes (CR) in thousands of animals that received FACTREL, Fertiline® or current farm protocol. In these studies which included more than 12,000 cows, there was no difference in CR between cows treated with FACTREL and all other salt versions of gonadorelin, regardless of the FTAI protocol used.

Synchronization protocols aid in reproductive management by allowing dairy producers to synchronize estrus and ovulation, improve insemination rates and improve CR to first service FTAI compared with breeding practices that depend on heat detection. Using FACTREL and LUTALYSE® in combination provided an FDA-approved method of synchronizing estrus and achieving consistent CRs in thousands of dairy cows in widespread locations utilizing a variety of FTAI programs.

<table>
<thead>
<tr>
<th>Investigator(s)</th>
<th>Total Observations (n)</th>
<th>Conception Risk (%)</th>
<th>Comparator Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoetis, 2015</td>
<td>5,827</td>
<td>37.6</td>
<td>39.0</td>
</tr>
<tr>
<td>Caldwell et al., 2014</td>
<td>2,620</td>
<td>40.4</td>
<td>41.0</td>
</tr>
<tr>
<td>Poock and Lucy, 2015</td>
<td>3,938</td>
<td>36.0</td>
<td>37.0</td>
</tr>
</tbody>
</table>
IMPORTANT SAFETY INFORMATION FOR LUTALYSE: Women of childbearing age and persons with respiratory problems should exercise extreme caution when handling LUTALYSE. LUTALYSE is readily absorbed through the skin and may cause abortion and/or bronchospasms, therefore spillage on the skin should be washed off immediately with soap and water. Aseptic technique should be used to reduce the possibility of post-injection clostridial infections. Do not administer LUTALYSE in pregnant cattle unless cessation of pregnancy is desired. See full Prescribing Information, attached.

IMPORTANT SAFETY INFORMATION FOR FACTREL: FACTREL is for use in cattle only. Please see full Prescribing Information, attached.

REFERENCES

2 Data on File, Study Report No. 13PETREPRO01-08D, Zoetis Inc.

4 Poock S, Lucy M. Conception rate for postpartum dairy cows treated with different gonadorelin (GnRH) products for first or resynchronized timed AI. Presented at 2015 Midwest ADSA/ASAS Meeting, Des Moines, IA, March 16-18, 2015.

Factrel' Injection
(gonadorelin injection)

50 mcg gonadorelin per mL (as gonadorelin hydrochloride) Solution for Intramuscular Injection.

For use in cattle only.

CAUTION
Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION
FACTREL Injection is a sterile solution containing 50 micrograms of synthetic gonadorelin (as hydrochloride) per mL in aqueous formulation containing 0.6% sodium chloride and 2% benzyl alcohol (as a preservative).

Gonadorelin is the gonadotropin releasing hormone (GnRH) which is produced by the hypothalamus and causes the release of the gonadotropin luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary.

FACTREL Injection has the identical amino acid sequence as endogenous gonadorelin; 5-oxo Pro-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH$_2$. The corresponding values for gonadorelin hydrochloride are 1219 (1 HCl) expressed as $C_{55}H_{75}N_{13}O_{17}$. The molecular weight of gonadorelin is 1182 with a molecular formula of $C_{55}H_{75}N_{13}O_{17}$.

Gonadorelin is the gonadotro pin releasing hormone (GnRH) which is produced by the hypothalamus and causes the release of the gonadotropin luteinizing hormone (LH) to produce this same effect.

Gonadorelin, through release of LH has been demonstrated to induce ovulation of dominant ovarian follicles present on the bovine ovary during the estrous cycle.

FACTREL Injection induces release of endogenous luteinizing hormone (LH) to produce this same effect.

Mechanism of Action
Follicular cysts are enlarged non-ovulatory follicles resulting from a malfunction of the neuroendocrine mechanism controlling follicular maturation and ovulation. Exogenous administration of agents possessing luteinizing hormone (LH) activity, such as pituitary extracts or human choric gonadotropin, often causes ovulation or regression of follicular cysts. FACTREL Injection induces release of endogenous luteinizing hormone (LH) to produce this same effect.

Gonadorelin, through release of LH has been demonstrated to induce ovulation of dominant ovarian follicles present on the bovine ovary during the estrous cycle. Administration of FACTREL Injection has the same effect.

INDICATIONS FOR USE
For use with LUTALYSE (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows.

DOSAGE
For the treatment of ovarian follicular cysts in lactating dairy cows, beef cows, and replacement dairy and beef heifers: Administer 2 mL of FACTREL Injection as a single intramuscular injection.

For use with LUTALYSE (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows:

Administer 2 to 4 mL FACTREL Injection (100-200 mcg gonadorelin) per cow as an intramuscular injection in a treatment regimen with the following framework:

- Administer the first dose of FACTREL Injection (2-4 mL) at Day 0
- Administer LUTALYSE (25 mg dinoprost, as dinoprost tromethamine injection) injection by intramuscular injection 6-8 days after the first FACTREL injection.
- Administer a second dose of FACTREL Injection (2-4 mL) 30 to 72 hours after the LUTALYSE injection.
- Perform FTAI 0 to 24 hours after the second dose of FACTREL injection, or inseminate cows on detected estrus using standard herd practices.

Below are three examples of treatment regimens for FTAI that fit within the dosage regimen framework described immediately above:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 (Monday)</td>
<td>1st FACTREL</td>
<td>1st FACTREL</td>
</tr>
<tr>
<td>Day 7 (the following Monday)</td>
<td>LUTALYSE</td>
<td>LUTALYSE</td>
</tr>
<tr>
<td>Day 9 (Wednesday)</td>
<td>2nd FACTREL + FTAI at 48 hours after LUTALYSE</td>
<td>2nd FACTREL 48 hours after LUTALYSE</td>
</tr>
<tr>
<td>Day 10 (Thursday)</td>
<td>FTAI 24 hours after 2nd FACTREL</td>
<td>FTAI 18 hours after 2nd FACTREL</td>
</tr>
</tbody>
</table>

Mechanism of Action
Follicular cysts are enlarged non-ovulatory follicles resulting from a malfunction of the neuroendocrine mechanism controlling follicular maturation and ovulation. Exogenous administration of agents possessing luteinizing hormone (LH) activity, such as pituitary extracts or human choric gonadotropin, often causes ovulation or regression of follicular cysts. FACTREL Injection induces release of endogenous luteinizing hormone (LH) to produce this same effect.

Gonadorelin, through release of LH has been demonstrated to induce ovulation of dominant ovarian follicles present on the bovine ovary during the estrous cycle. Administration of FACTREL Injection has the same effect.

WARNINGS AND PRECAUTIONS
For use in animals only. Not for human use. Keep out of reach of children.

RESIDUE WARNINGS
No withdrawal period or milk discard time is required when used according to labeling.

EFFECTIVENESS
For the treatment of ovarian follicular cysts in lactating dairy cows, beef cows, and replacement dairy and beef heifers:

The treatment effect of FACTREL Injection when used in lactating dairy cows, beef cows, and replacement dairy and beef heifers is a reduction in the number of days to first estrus.

There were no significant differences in days from treatment to conception, frequency of cows conceiving at first or subsequent heats, or conception rates among treated or non-treated control animals, when FACTREL Injection was used alone for treatment of cystic ovaries.

For use with LUTALYSE (dinoprost tromethamine injection) Injection to synchronize estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating cows:

A field study was conducted to compare control (0 mL FACTREL Injection) to two doses of 2, 3 or 4 mL FACTREL Injection (100-200 mcg gonadorelin) for use with LUTALYSE Injection to synchronize estrous cycles to allow FTAI in lactating dairy cows under field conditions. Cows were examined prior to study start and only clinically normal cows were enrolled. A total of 1142 cows were enrolled at 6 commercial dairies. Cows were assigned randomly in blocks of 4 cows to each of 4 treatment groups consisting of:

- Day 0: 2, 3 or 4 mL dose of FACTREL Injection or no injection (Control)
- Day 7: 5 mL LUTALYSE Injection (all treatment groups)
- Day 9: 2, 3 or 4 mL dose of FACTREL Injection or no injection (Control)
- Day 10: Fixed-time artificial insemination

On Day 9 the second dose of FACTREL Injection (cows received the same dose as for first treatment) was given either 48 or 56 hours after the dose of LUTALYSE Injection and FTAI was conducted 24 or 17 hours later, respectively. For control cows FTAI was performed 72 hours after the LUTALYSE injection dose was administered. All treatment groups had significantly greater pregnancy rates to FTAI than cows administered LUTALYSE Injection alone, and were 17.1, 27.3, 29.1 and 32.2% for cows receiving 0 (Control), 2, 3 or 4 mL FACTREL Injection, respectively.

SAFETY AND TOXICITY
In cows the intramuscular administration of up to 12.5 times maximum recommended dosage (2,500 mcg/day) of FACTREL Injection for 3 days did not affect any physiological or clinical parameter. Likewise, single intramuscular doses of 500 mcg did not interfere with pregnancy. No evidence of irritation at injection site was found in any animal.

A total of 1142 cows were enrolled in the previously noted field study that evaluated the effectiveness of two doses of 2, 3 or 4 mL of FACTREL Injection for use with LUTALYSE Injection to synchronize estrous cycles to allow FTAI in lactating dairy cows. Cows were observed daily for abnormal clinical signs. Over the course of the study there were 148 adverse health events documented in 118 cows. These adverse health events were common conditions in dairy cows (mastitis, lameness and pneumonia) and are not considered related to treatment.

ADVERSE REACTIONS
To report suspected adverse events, for technical assistance or to obtain a copy of the Material Safety Data Sheet (MSDS) contact Zoetis Inc. at 1-888-963-8471.

For additional information about adverse drug experience reporting for animal drugs, contact FDA at 1-888-FDA-VETS or online at http://www.fda.gov/AnimalVeterinary/SafetyHealth.

HOW SUPPLIED
FACTREL Injection (gonadorelin injection), 50 mcg/mL is available in 20 mL and 50 mL multi-dose vials (box of one).

STORAGE CONDITIONS
Store at refrigerator temperature 2° to 8°C (36° to 46°F). Use contents within 1 month of first vial puncture.

NADA 139-237, Approved by FDA

Distributed by:
Zoetis Inc.
Kalamazoo, MI 49007
Revised: May 2015
40004714A&P
Lutalyse® Injection
(diclofenac injection)
by your veterinarian on an empty stomach.

Administration: Federal (FBI) has not been reviewed on an empty stomach.

Description: LUTALYSE® injection (2% diclofenac) is a sterile solution containing the naturally occurring
glycine betaine and 12.5% sodium diclofenac. Each mL contains 25 mg of sodium diclofenac. Contact manufacturer if any difficulty arises in handling or storage conditions.

DOSAGE AND ADMINISTRATION

1. For injection: Administer LUTALYSE® injection intramuscularly to cattle. The dose is 1 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

2. For intravenous use: Administer LUTALYSE® injection intravenously to cattle. The dose is 1 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

3. For oral administration: Administer LUTALYSE® injection by oral administration. The dose is 1 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

4. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

5. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

6. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

7. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

8. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

9. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

10. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

11. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

12. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

13. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

14. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

15. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

16. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

17. For use with FABRECI® (phenylbutazone injection): Granulocyte-macrophage colony-stimulating factor (GM-CSF) is administered intramuscularly to cattle. The dose is 0.2 mL of FABRECI® (phenylbutazone injection) per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.

18. For use with LUTALYSE® injection: Administration of LUTALYSE® injection should be administered intramuscularly to cattle. The dose is 1.0 mL of LUTALYSE® injection per 125 lb (56 kg) of body weight. The injection site should be a large, well-vascularized muscle mass.